May 18, 2016

MicroLink Devices is proud to announce that Airbus Defence and Space has issued a production contract for MicroLink’s epitaxial liftoff (ELO)-based multijunction solar sheets for use on the new Zephyr S platform.

The Zephyr platform is a new class of unmanned air vehicle that operates as a high altitude pseudo-satellite (HAPS) enabling affordable, persistent, local satellite-like services.  The aircraft runs exclusively on solar power, and the Zephyr aircraft is at the forefront of the HAPS arena, holding world records with regards to absolute endurance (more than 14 days) and altitude (more than 70,000 feet).  The British Ministry of Defence currently has ordered two Zephyr S from Airbus Defence and Space.  The Zephyr S has a wingspan of 25 meters, is 30% lighter and can carry 50% more batteries than its predecessor – the 22.5 meter wingspan Zephyr 7.  This enables the Zephyr S to carry heavier payloads for surveillance and communications roles.  The Zephyr S is designed to fly continuously for over a month before having to land.  The vehicle can then be refurbished and redeployed.

MicroLink Devices has developed a lightweight, flexible, high-efficiency solar sheet that is an enabling technology for electrically powered, area and weight constrained applications such as unmanned air vehicles, which run on renewable energy.  The combination of high-efficiency and low mass enabled by ELO-based solar cells provides superior performance compared to any other currently available solar cell technology platform. MicroLink’s ELO solar cells are a perfect match for the HAPS platform.  The resulting solar sheets have specific powers in excess of 1,000 W/kg and areal powers greater than 250 W/m². MicroLink’s ELO technology was sponsored by numerous US agencies including NASA, DARPA, the Air Force Research Laboratory, the Office of Naval Research, NAVAIR, Army Research Office, Army REF, CERDEC, and the Department of Energy.

Dr. Noren Pan, the President and CEO of MicroLink Devices, said, “We are extremely pleased to have developed a relationship with the Zephyr team four years ago and to transition our high-performance solar sheet development efforts into a production program.  We are also thankful to Airbus for their purchase order and the confidence they have in MicroLink’s solar sheet technology and manufacturing ability.  We know of no other flexible solar sheet that offers a comparable performance in terms of power and weight and reliability under a wide temperature range.”

Steve Whitby, Head of HAPS Business Development stated, “Our collaboration with MicroLink Devices in the development stages and in the current production program has enabled the latest generation of Zephyr HAPS, which is a critical addition to our extensive portfolio of space and defense products.  MicroLink Devices is a world leader in the epitaxial liftoff of compound semiconductors providing outstanding performance for many semiconductor devices.  Combining Airbus and MicroLink Devices engineering expertise has proven to be a successful platform for our on-going success.”

About Airbus Defence and Space:

Airbus Defence and Space is a division of Airbus Group formed by combining the business activities of Cassidian, Astrium and Airbus Military. The new division is Europe’s number one defense and space enterprise, the second largest space business worldwide and among the top ten global defense enterprises. It employs more than 38,000 employees generating revenues of approximately €13 billion per year.

Airbus Zephyr Link:

About MicroLink Devices:

MicroLink Devices is an American owned company located in Niles, IL.  Dr. Noren Pan co­founded MicroLink Devices in 2000. MicroLink has specialized in the growth of epitaxial structures that are used to make the high performance HBTs and power amplifiers that are essential to the high-speed communications industry.  MicroLink is an ISO 9001 certified semiconductor manufacturer.  Over the last eight years, MicroLink has been a prime federal contractor on projects to develop solar cells, detectors, lasers, and high-speed transistors.  In recent years, MicroLink has ramped up the production of its ELO-based solar cells and sheets for use in mobile power generation applications.

Contact Information:
MicroLink Devices, Inc.
Raymond Chan, +1-847-588-3001
Director of Solar Sheet Products
This email address is being protected from spambots. You need JavaScript enabled to view it.

December 16, 2015

MicroLink Devices is proud to have its lightweight, high-efficiency solar cell technology highlighted in NASA's premier annual publication, Spinoff.

MicroLink in Spinoff 2016

Here's the web link to the article covering our solar cell technology:

The entire magazine can also be downloaded here:  Our article starts on Page 118.

October 9, 2015

MicroLink's unique high-efficiency, lightweight, and flexible solar cell technology enables mobile power generation in a compact, stowable format not previously possible. Check out what we recently did for the US Army / CERDEC.

September 9, 2015

MicroLink Devices is pleased to announce that it has been awarded the following programs.

1)       SBIR Phase I through the Air Force Research Laboratory
Title:  40% Efficient, Radiation-Hard, Low-Cost Solar Cell using InP-Based Epitaxial Lift-Off

An ultra-high efficiency, radiation-hard, six-junction solar cell for application to Air Force space missions will be developed.  The proposed technology will comprise lattice-matched subcells grown on InP and GaAs substrates that are mechanically attached in a monolithic structure to achieve 1-sun AM0 efficiency in excess of 40%. To render the solar cell cost-efficient, MicroLink’s proprietary epitaxial lift-off (ELO) technology will be used to separate the epitaxial layers from the InP substrate, allowing it to be reused for multiple growth cycles.

2)       SBIR Phase I through NASA
Title: Flexible ELO Solar Cells with Ultra-High Specific Power and Areal Power Density

Ultra-lightweight, high-efficiency, GaAs-based, multi-junction solar cell suitable for use in future platforms requiring very high specific power (>2.0 kW/kg) and areal power density (>370 W/m2) will be developed.  The resulting solar cell technology will enable power generation and conversion for robotic science mission applications, and in particular solar electric propulsion (SEP). In addition to drastically reducing the mass of MicroLink’s current highly flexible ELO solar cell technology, advanced novel compact lightweight array designs will be possible. This will be achieved primarily by reducing the metal content of MicroLink’s current inverted metamorphic (IMM), epitaxial lift-off (ELO) solar cell and replacing the metal with robust, low-density, space qualified polymers that will retain the flexibility, durability and robustness of ELO solar cell at a fraction of its present weight.

3)       SBIR Phase I through NASA
Title: Radiation Hard, High Efficiency, Quadruple Junction Solar Cells Based on InGaAsN

High-efficiency (>40%), quadruple (4) junction solar on lightweight Ge substrates will be developed.  A new semiconductor alloy, InGaAsN, will be developed and employed as the 1.18 eV bottom cell in quadruple-junction [InGaP (1.8 eV) / GaInAs P(1.5 eV) / InGaAsN (1.18 eV) / Ge (0.67eV)] solar cells. The InGaAsN alloy material will be lattice matched to Ge, which is a clear improvement over existing inverted metamorphic (IMM) technology, specifically, the existing lattice-mismatched InGaAs 1.0 eV bottom cell is replaced with a lattice-matched InGaAsN 1.18 eV bottom cell. This eliminates the need to grow a thick graded buffer layer. Another advantage of this system is higher efficiency and higher reliability solar cells which can effectively be a drop in replacement to the existing Ge based space cells. At the end of this project, MicroLink expects to have developed and integrated InGaAsN - 1.18 eV material, which can be used in Ge-based multi-junction cells that have the potential to achieve efficiencies in excess of 40% at AM0, one sun illumination.

4)       SBIR Phase I through NASA
Title: Large-Area, Multi-Junction, Epitaxial Lift-Off Solar Cells with Backside Contacts

An innovative fabrication process to introduce backside contacts to MicroLink Devices' large-area, multi-junction epitaxial lift-off (ELO) solar cells will be developed. This will enable a new solar cell technology with potential benefits for future NASA solar electric propulsion (SEP) programs using very large solar cell arrays. Backside contacts are used in the highest efficiency silicon solar cells manufactured by SunPower (>24% efficiency in production) but have never been successfully applied commercially to multi-junction solar cells. Benefits for large-area space solar cell include: higher device efficiency by reducing topside grid shadow and resistive losses, new approaches for panel assembly by placing contacts on backside of solar cell, and reduced arcing in high-voltage arrays by eliminating topside interconnects. The proposed technology builds on MicroLink Devices' low-cost, lightweight ELO solar cell technology and previous experience with backside contact solar cells for CPV applications.

About MicroLink Devices, Inc.

MicroLink Devices, Inc. was founded in 2000 by Dr. Noren Pan, its current president and CEO.  The company specializes in metalorganic chemical vapor deposition (MOCVD) growth of semiconductor structures for use in communications devices, and in the growth and fabrication of advanced solar cells for space, unmanned aerial vehicle (UAV), and terrestrial use.  MicroLink also performs engineering research and development services: it has collaborated on commercial research and development projects with many other companies, and has been a prime federal contractor on many solar cell, optoelectronics, and electronics projects since 2003.  The company has earned ISO 9001 Certification for its quality and service practices. 

This email address is being protected from spambots. You need JavaScript enabled to view it.

Recent News
Read more on what's happening at MicroLink...